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In regard to a two-dimens 'on 1 subsonic laminar boundary layer the customary view is
that its stability against plane waves (Tollmien—Schlichting waves), propagating in the same
direction as the mean-velocity v or (direct waves), must be investigated {1]. This
follows from the Squire theorem, which states that in a study of the transient instability of
a plane-parallel flow the problem for a wave propagating at an angle to the direction of the
principal velocity (obligue wave) reduces to a two-dimensional problem with a lower Reynolds
number. This suggests that the instability Reynolds number is determined directly from two-
dimensional analysis [2, 3]. For practical applications, however, it is very important to
know the increments of the waves. In particular, semi-empirical methods of calculating the
transition Reynolds number, based on the determination of the amplification of the unstable
waves, are used extensively [4, 51.

As a rule, in the theory of hydrodynamic instability and transition in the boundary
layer the Squire theorem is interpreted much more broadly: Reynolds number is taken to mean
the transition Reynolds number. It is also assumed that for a fixed Reynolds number the local
increment of the oblique wave is smaller than that of the direct wave for the same Reynolds
number, but this does not follow from the theorem.

Moreover, the statement of the theorem concerning the instability Reynolds number is
not always valid, even for a two-dimensional incompressible laminar boundary layer on the
assumption of plane-parallel conditions, since the transformation used by Squire is strictly
valid only when the characteristics of the average flow are invariant under this transformation
{self-similar boundary layers) and when the wave numbers of the disturbalces are real {(tran-
sient instability) or the ratio of the complex component of t?e wave number of the oblique
wave in the direction of the velocity of the mean flow and t complex wave number of the
equivalent direct wave is real (the R valent wave should be real).

his substantially limits the app to boundary layers and
virtually makes it valueless in t ansition. The theorem was
previously shown to be imapplicable ayers [2].

Our aim here is to show tha s are "less dangerous" for
the transition to the turbulent mensional incompressible
isothermal boundary layer in the n other words, it is asserted
that oblique waves can have lower arger increments, and in the
end, lower transition Reynolds

Formulation of the Problem subsonic laminar boundary
layer of an incompressible liqu As the mathematical model we
take the Navier—Stokes equation investigate the stability of
this boundary layer against dis main flow in the approxima-
tion of a plane-parallel bounda le U{x, y) of the longitudi-
nal component of the velocity v f the velocity vector is
assumed to be zero and the thic ant {1, 2}]. The initial
equations must be linearized in he instability. The solu-
tion of the linearized system of e of two plane waves:

@, v, w,p) = (f, ¢ h, n) exp lilaz + Pz — 01)]
Here p', u', v', and w' are the disturbances of the pressure and the components of the velocity
vector; m, f, ¢, and h are their amplitudes; a and B are the wave numbers in the x and z
directions; w is the angular frequency; and t is the time.
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Substituting these expressions into the linearized equations, we obtain [2]

iU —0)f +U'e = —ian + g [/ — @], i (@l — 0) g = (1)

i

L3, il o) hm B - [R5, ]+ BE) + g =0,

The boundary conditions are

=0, 0, k>0 (y > o)
[R = (U.x/v) is the modified ReyﬂOLdb numbel, calculated from the velocity at the outer
b

(Ve
oundary of the layer, and 82 = «? + B?].
S

tudying the stability thus comes down to finding the eigenvalues of the boundary-
value problem (1), (2), i.e., the complex values of « and B as functions of the parameters
R and w (or the dimensionless frequency parameter F = wv/Ug?). The boundary-value pro oblem
(1), (2) was solved numerically on a computer by an improved orthogonalized method [6, 7].

Results of Calculations. All the calculations were performed for an isothermal boun-
dary layer on a flat plate. In Fig. 1 we show the neutral btdulllty curves, constructed
for direct and oblique waves. Here and below i i rrespond to oblique waves and
the dashed lines, to direct lines. The ngi irves for the two waves coin-
cide, We see that in the region of rather low freque 10*) the minimum values of
the instability Reynolds numbers for oblique waves of requency become smaller than
for the direct wave and the range of the unstable frequencies expands. This is particularly
clear from the dependences of the local growth coefficients of the disturbances a; (the
1mag1naxy parts of the wave number a, for a plane wave aj } on R, which are shown in
Fig. 2, calculated for four values of the frequency parameter R: a) F*10° =3, b) 2, c)
0.85, d) 0.25. It is interesting to note that for the first three frequencies the maximuim
for an oblique wave coincides with the maximum for the direct wave, while
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local increment
it is 131 er for the fourth. This is because the maximum local increment for direct waves
begins to decrease from a certain frequency as the frequency decreases further, and as a

i
result the curves of the constant local increment for direct waves are closed.

The angle X = arctan (8/a) between the mean-velocity vector and the direction of pro-
pagation of the wave is plotted against R in Fig. 3; x is the angle at which the amplifica-
tion of the wave is maximum. We see that near the left branch of the neutral curve this
c its maximum value and then falls t at some value of R. It is smaller
n the R at which the maximum value of a: for two values of the frequency
parameter, i1s approximately equal to this he third and higher for the fourth.
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For the frequency parameters F < 0.85-107° the wave with m
on a segment greater than the region where the local ampli
angle of inclination has its largest value at the beginning of
decreasing F, and approaches 90° in the limit F - 0.

In Fig. 4 we show the dependences of the local amplifica
of inclination x of the wave, calculated for a fixed value
1.7, and 2 (lines 1-4). From the graphs we can trace the
the obligue wave moves from the left branch of the neutral-
branch. We see, for example, that while for the first value o
branch, &; is maximum for the oblique wave (x = 55°), for
approximately constant over a wide range 0 < x < 45°. Wit
the maximum shifts to the zero value of aj and becomes more and
oo Ve 2 AV o o I n it Ll oo LT 11 3
LOonly 1n tnis ralge of values of n) with the established ide
larger for the direct wave than for the oblique wave.

o)«

T 1
quency parameter are given in Fig. 5. We see t
ch ¢ t 1€ i

waves can be much higher than

uen
of the maximum values of J fu1 dixect and obligue waves at

and 0.25-107°% is 1.18, 1.25, 1.8, and 2.8 (a-d). And althou

difference is not very large, we note that according to the
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to turbulence (N = 9) while this does not happen for the direct wave. In other words, cblique
waves can be the cause of the transition to turbulence.

In Fig. 6 the maximum value Jp,x from the entire range of unstable freq uencies is
plotted as a function of R for direct and oblique waves. The excess of Jg,y for the obligue
wave over its value for the direct wave becomes larger and larger as R increases. It also
follows from Fig. 6 that oblique waves have a lower critical Reynolds number R., and cause
a transition to turbulence at a point lying higher along the flow. For example, at N = § it is
Rep = 1.6°10% as against Rop = 1.88:162 for the direct wave while at N = 11 it is Ryp = 1.76-
10° as against Ry = 2.09-10%. This corresponds to the transition region being shortened by
a factor of 1.38 in the first case and 1 1 the second.
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standpoint of the linear theory, wh

nich the direct wave is more stable than is the oblique wave.

In summary, we have demonstrated that oblique waves play a much greater role in the pro-
cesses uf the trau51t10n to tur bulent fLOW tuan has been generally accepted. They can have

lo ments and can be the cause of turbulence.
It is im porLant to point out that this can occur not only because the critical transition
Reynolds number can be substantially lower for oblique waves but also because they have a
three-dimensional structure even in the linear theory.
We thank V. Ya. Levchenko for useful discussions as well as for drawing our attention
to the paper by Robey [8].
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